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1987), GENSTAT (Payne et al. 1987) and S-PLUS
(Becker, Chambers & Wilks 1988) software packages.
Additional software with logistic regression capabilities
include SAS (SAS Institute Inc. 1988), BMDP (Dixon
1987) and SYSTAT (Wilkinson 1987).

The use of GLMs in plant ecology has several draw-
backs compared with the modelling approach advocated
here; most importantly, GLMs are not as readily ex-
ploratory in nature. Ter Braak & Gremmen (1987)
observe that in practice, the correct model to be fitted is
rarely known and diagnostic plots seldom appear to be
carried out to test the validity of the models (Landwehr,
Pregibon & Shoemaker 1984).

Generalized linear models

Generalized additive models (GAMs) are a nonpara-
metric extension of GLMs, so it is useful to review the
main points of GLMs before describing GAMs in detail.

For GLMs we have sample data (Yi, xi) (i = 1,2,.., n)
where Yi is the  response variable, n is the sample size
and xi = (xi1, xi2,.., xip)

T is a vector of p explanatory
variables or covariates. When p = 1, xi  may be written as
xi. The Yi  are independent and have a distribution
belonging to the exponential family. This family con-
tains many common distributions such as the normal
(Gaussian), Poisson, binomial, negative binomial, geo-
metric, beta, exponential and gamma. The mean of the
response variable at X = x, namely, µi = µi (x)=  E(Yi) =
E(Yi|x), is related to the covariate information by
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where g is a prespecified function called the link func-
tion, α is the intercept or constant term and β = (β1,
β2,…, βp)

T is a vector of regression coefficients. The
right hand side of (1) is a plane in p-dimensional space.
The purpose of the link function is to transform (link)

 g(µ) = α + βT x = α +       βjxj (1)∑
p

j = 1

Introduction

Generalized linear models (GLMs) as proposed by
Nelder & Wedderburn (1972) have been successfully
applied in ecological research (e.g. Austin & Cun-
ningham 1981, Nicholls 1989, Austin, Nicholls &
Margules 1990). This approach has enabled biologists
to model species responses to a wide range of environ-
mental data types (such as discrete, categorical, ordinal
and continuous data) under a single theoretical and
computational framework. The theory of GLMs has
been well developed (McCullagh & Nelder 1989; for an
introductory treatment see Dobson 1990). Literature
describing logistic regression, a specialized form of
GLM for binary data include Jongman, ter Braak & van
Tongeren (1987), Hosmer & Lemeshow (1989), and
van Houwelingen & le Cessie (1988). GLMs are com-
monly fitted by the GLIM (Numerical Algorithms Group
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the mean of Y to lie on a plane in this p-dimensional
space.

The deviance is used to measure goodness of fit of a
model. The deviance, a generalization of the residual
sum of squares in ordinary regression, is a function of
the data and of the fitted values, and when divided by a
scale factor is asymptotically chi-squared. To test if a
smaller model (i.e. one with fewer variables) is applica-
ble given a larger model, it is only necessary to examine
the increase in the deviance and to compare it to a chi-
square distribution with degrees of freedom equal to the
difference in the number of parameters in the two mod-
els (as each parameter or term has 1 degree of freedom).
This enables a test as to which variables can be deleted
to form a smaller model or which variables need to be
added to form a larger model. Smaller deviances indi-
cate a better fit.

In this study only binary data were available; the
following discussion deals with GLMs applied to data
of this form.

Logistic regression

GLMs will be contrasted with GAMs in the context
of logistic regression models for binary (e.g. presence/
absence) data. Let Y = 1 or 0 denote the presence/
absence of a species respectively and p(x) = P(Y = 1|X =
x) be the probability the species is present in a quadrat of
fixed size when X = x. In the literature p(x) is referred to
as the ‘presence-absence response curve’ (ter Braak &
Looman 1986) and its use is an example of direct
gradient analysis - the species’ probability of presence
(or abundance) is described as a function of measured
environmental variables.

For binary data it is more convenient to model

logit{ p(x)} = log{ p(x)/(1–p(x))}

rather than p(x) itself because of technical problems
caused by the constraint that p(x) lies between 0 and 1.
In the context of GLMs we have µ(x) = p(x) and g(p) =
logit(p). The logit transformation stretches the interval 0
to 1 to –∞ to +∞. If logit{ p(x)} could be plotted against
the individual variables, this would define a (regression)
surface. GLMs attempt to approximate this unknown
regression surface using a restricted class of parametric
terms. For example,

logit(p) = α + β1x1 + β2x1
2 + β3x2 + β4x2

2,

which consists of linear and quadratic terms in the
variables. This is known as the 2 dimensional Gaussian
logit model with no interaction term (see below). The
one dimensional Gaussian logit model is

logit(p(x)) = α + β1x + β2x
2

= a – (x–u)2/(2t2). (2)

In the second formulation, u is often called the species’
optimum or indicator value and t its tolerance (a meas-
ure of ecological amplitude). The resulting presence-
absence response curve is

p(x) = exp(α + β1x + β2x
2)/{1 + exp(α + β1x + β2x

2)}
= 1/{1 + exp(–α – β1x – β2x

2)}

which is symmetric and bell-shaped. This popular model
is known as the ‘Gaussian logit curve’ (Jongman, ter
Braak & van Tongeren 1987).

Drawbacks of GLMs

Sometimes GLMs are not flexible enough to ap-
proximate the true regression surface adequately (e.g.
the Gaussian logit only accomodates symmetric bell-
shaped curves whereas the true curve may be asym-
metrical). Even by adding extra terms (e.g. a cubic
term), the approximation may still be inadequate. GAMs
allow a wider range of response curves to be modelled,
of which GLMs become a special case.

For plant species, there has been a long debate as to
the appropriate shape that response curves should have.
For example, Whittaker (1956) observed that species
typically show unimodal response curves. In that study,
he proposed that species’ response curves could ap-
proximate normal curves in the sense of being symmet-
ric and bell-shaped. Since then, these curves have been
promulgated in all areas of biological literature and have
become almost a basic tenet in plant ecology (Austin
1979). However, these models have been under attack
and heavily criticized. Austin & Smith (1989) have
recently stated “When applying niche theory to plants
… the assumption of bell-shaped response curves for
species [is] unrealistic.” They comment that most spe-
cies responses appear skewed and that “the bell-shaped
pseudo-gaussian response curves for both fundamental
and realized niche responses are unrealistic for plants.”
It will be seen later that, for a single gradient, GAMs
provide a convenient test for these two hypotheses.
Even if the data were bell-shaped, a Gaussian logit
model may not be able to model them correctly since
p(x) for a Gaussian logit model has a flatter top if p(u) is
approximately unity, than does a normal probability
curve (ter Braak & Looman 1986).

There are many examples of data sets in the litera-
ture which are bimodal or skewed. For example, Austin
(1987) found that positive-skewed curves were charac-
teristic of major tree canopy species in Eucalypt forests
in southern Australia. Another example is Austin,
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tory variable has an additive effect. Consequently, one
can interpret the contribution of each variable by exam-
ining each function. This is a crucial concept. However,
as explained below, such an interpretation holds only if
there are no interactions.

The value in having the data suggesting the response
curve is illustrated by a recent paper by Austin, Nicholls
& Margules (1990). In this paper, one of the reasons
why three continuous variables (mean annual tempera-
ture, mean annual rainfall and solar radiation index)
were categorized was so that the magnitudes of the
model coefficients from each category would indicate
the shape of each species’ response. This is an attempt to
do what GAMs can do much better! In detail, they
treated each environmental variables as a factor by
dividing each one into a number of classes: rainfall into
nine classes of 200 mm, temperature into 12 classes of 1
°C and solar radiation into five classes of 0.1 units. From
this they fitted

logit p = αi + βj + τk,  i = 1,.., 9; j = 1,.., 12; k = 1,.., 5
(3)

and plotted the fitted αi's, βj's and τk's (called the coeffi-
cient diagram) to reveal the shape of the transformed
response and whose shape suggested an appropriate
continuous function for each variable. Clearly, GAMs
do this but are more general, flexible, robust and effi-
cient than this categorical/discrete modelling proce-
dure. The work by Austin, Nicholls & Margules (1990)
shows the application and value of a nonparametric fit in
this context.

Note that the three variables in (3) do not interact.
For this reason, the authors wrote “Interpretation of the
coefficient diagram, to assess an appropriate polyno-
mial function, is possible due to the demonstrated inde-
pendence of the three factors.” The same is true with
GAMs - the contribution of each variable can be inter-
preted separately only if there are no interactions.

We stress again that the usefulness of GAMs is not
confined to binary data. Indeed, they can handle any of
the data types that GLMs are used for (e.g. Gaussian,
multinomial, Poisson data) as well as certain types of
survival data. The essential difference is simply that
linear functions of the variables are replaced by un-
known smooth functions which gives additional flex-
ibility for the modelling process.

GAMs were proposed by Hastie & Tibshirani (1986)
who implemented the method in the FORTRAN pro-
gram GAIM (Generalized Additive Interactive Model-
ling). The program allows the replacing of any fj(xj) by
linear functions (i.e. the fitting of GLMs instead of
GAMs), and enables one to test whether the unspecified
smooth functions fj can be replaced by one or more

Nicholls & Margules (1990), who analysed five species
using GLMs and found bell-shaped, skewed and com-
plex response curves. Even with the transformation of
variables and the addition of higher order terms, GLMs
can still be an inadequate modelling procedure.

When using GLMs (or any statistical procedure),
care must be taken that a sensible result is obtained. For
example, if (2) is fitted to data and the estimate of β2,
namely β̂2

2, is positive this would mean u is a minimum
rather than a maximum. Such a model clearly contra-
dicts biological reality. Hence, in the first case, the
Gaussian logit curve (2) should be rejected if β̂2

> 0.

Generalized Additive Models

GAMs are data-driven rather than model-driven;
that is, the resulting fitted values do not come from an a
priori model. The rationale behind fitting a nonparametric
model is that the structure of the data should be exam-
ined first, before fitting an a priori determined model.
Although this can be done using GLMs (e.g. Austin,
Nicholls & Margules 1990) by categorizing the data, it
is inefficient.

GLMs relate the mean response to the x variables via

  g(µ) = α + βTx = α +       βj xj  .

GAMs relax this to simply

g(µ) = α + ∑
p

j = 1
fj (xj ) .

where the fj are unspecified smooth functions. In prac-
tice the fj are estimated from the data by using tech-
niques developed for smoothing scatterplots. There are
many types of scatterplot smoothers e.g. the running
lines, running means, running medians, cubic splines,
B-splines, the Lowess of Cleveland (1979) and the
Supersmoother of Friedman & Stuetzle (1981). For an
introduction to smoothers see Goodall (1990) and Hastie
& Tibshirani (1990). In order to make the functions f1,
f2,…, fp unique, they are constrained to be centered
about zero; that is, E(fj(xj)) = 0 for all j. If fj(xj) = βjxj for
all j, the GAM is a GLM.

Thus GAMs allow the data to determine the shape of
the response curves, rather than being limited by the
shapes available in a parametric class. As a result,
features such as bimodality and pronounced asymmetry
in the data can be easily detected. For this reason GAM
modelling provides a better tool for data exploration
than GLM modelling.

The regression surface, g(µ(x)), is expressed as a
sum of functions of each variable, so that each explana-

∑
p

j = 1
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parametric terms (see below). This allows an attractive
approach to modelling, with a seamless transition be-
tween nonparametric and parametric models. Thus, a
mix of parametric and nonparametric variables can be
modelled together. App. 3 gives information on how
GAIM may be obtained. GAMs will be also be able to
be fitted in the next release of New S (Becker, Chambers
& Wilks 1988). This version will be capable of using
higher dimensional smoothers and the software will be
described in Chambers & Hastie (in press).

 GAMs require high speed computing and good
graphics, and can be a powerful exploratory tool for the
ecologist. For example, the detection of bimodality is
difficult using GLMs but automatic for GAMs. Each
variable is represented separately, therefore each func-
tion can be plotted separately to examine the roles of the
variables in predicting the response. However, the effect
of each variable is determined while allowing for the
effects of the other variables (assuming there is no
interaction). Complications caused by interactions will
be discussed below.

Other forms of nonparametric curve fitting have
been used in the ecological literature [e.g. the use of
moving averages by Ashton (1976), Austin, Cunningham
& Fleming (1984) and Ogden & Powell (1979), and
running medians by Austin & Austin (1980)]. However
GAMs have three advantages over such attempts. Firstly,
it is not necessary to group continuous variables. Sec-
ondly, GAMs enable exploration of the simultaneous
effect of several variables on p(x) rather than just one.
Lastly, GAMs allow hypothesis testing upon the vari-
ables. In the past, only limited use of smoothers were
made in ecology. However, they are now becoming
more widely used, especially since computers and soft-
ware have become more available to biologists. They
are a powerful tool, especially in an exploratory phase.

A number of techniques similar to GAMs have been
developed relatively recently. These are briefly described
in App. 1.

Technical details

In this section technical details for the development
of a model using GAMs are described. For more details
see Hastie & Tibshirani (1986, 1987a, 1987b, 1990).

Smoothers require the choice of a span in order to
operate. The span measures how large a neighbourhood
to take about a point when smoothing: the larger the
span, the smoother the curve. It is chosen from the data.
In all our examples the span was selected by cross
validation, an automatic procedure which minimizes the
sum of squared prediction errors when each data point is
predicted using the rest of the data. More explicitly, the
cross-validation sum of squares is minimized with

respect to the span, w:

CVSS (w ) = (1/n) ∑
n

i = 1

 
yi − f –i

ŵ (xi ) 


2

where f̂ w
–i (xi) is the value of the smoother with span w

at xi obtained using all the data except the point (xi, yi).
One can think of ̂f w

–i(xi) as the estimate of yi  obtained
using span w from the remainder of the data. The best
span is the one that provides the ‘best’ estimates, in
terms of the sum of squared prediction errors, on aver-
age. As each variable is smoothed separately, different
variables may have different spans and smoothers. An-
other example of flexibility is to use a higher (but not too
high) dimensional smoother to model complex interac-
tions between variables (see below). In the case of two
variables this would mean fitting g(µ) = α + f(x1, x2).

The degrees of freedom of a smooth fit is usually a
real number rather than an integer for a GLM. In the case
of GAMs, the theory for this area has not been fully
developed (see Buja, Hastie & Tibshirani 1989): but an
approximation for running-lines smoothers is that 1 +

1
SPAN ≤ degrees of freedom ≤ 2 +

1
SPAN . For a para-

metric fit each term in the model takes up one degree of
freedom.

After the fitting of a GAM, the nonlinearity of each
covariate can be tested by fitting two models - one with
a linear fit for the variable in question and the other with
a nonparametric fit. The difference in deviance between
the two models is attributed to nonlinearity. It is tested
against a chi-square distribution with d degrees of free-
dom, where d is the difference in the degrees of freedom
of the two models. Such tests are approximate and are
conducted because parametric fits are preferred to
nonparametric fits where possible (see below). This
hypothesis testing is very similar to that of GLMs. An
important special case is when there is only a single
explanatory variable. In the case of binary data (yi,xi) (i
= 1,.., n), a convenient method of testing whether the
response curve is symmetric bell-shaped or not is to test
for a significant difference between the GAM and
Gaussian logit. This directly addresses a major problem
of the past. In practice, several link functions should be
tried instead of just one. This is because different link
functions will give slightly different bell-shaped curves,
which may make a difference. Common link functions
for binary data include:

g(p) = log{p/(1–p)} logit link
g(p) = F–1(p) probit link
g(p) = log{–log(1–p)} complementary log-log link
g(p) = –log{–log(p)} log-log link,

where F is the distribution function of a standard normal
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random variable. For all of these link functions, fitting
g(p) = α + β1x + β2x

2 will give a symmetric bell-shaped
curve.

In software, the choice of smoother to implement is
based on a number of criteria. The speed of a smoother
is vitally important as smoothing is a major component
of the computation. Theoretical properties related to the
degrees of freedom and convergence is simplified if the
smoother belongs to a class called symmetric shrinking
smoothers. Also, a smoother that can handle observa-
tions with weights is mandatory. The version of GAIM
used here can either use a local linear smoother or a
cubic spline smoother. We used the former. In the future
it is likely that software will contain a number of
smoothers to choose from and that there will be docu-
mentation highlighting their differences.

An important point to note is that if a parametric
curve is ‘statistically allowable’, then for reasons of
parsimony it is to be preferred to a nonparametric curve.
A drawback of nonparametric models is that important
parameters such as the optimum and tolerance cannot in
general be extracted from a nonparametric fit. Indeed,
the concept of ecological amplitude becomes less well-
defined for asymmetric curves. To remedy this apparent
shortcoming of GAMs, it is necessary to fit a parametric
model. Often, the plots of f̂ j(xj) versus xj suggest possi-
ble transformations of the variables. After transforma-
tion it may be possible to replace f̂ j(xj) by a parametric
curve. If this cannot be done for all the variables, then
some variables can be fitted parametrically and the rest
nonparametrically. Models such as this are called gener-
alized partially additive models by McCullagh & Nelder
(1989) and are examples of semi-additive models (Green
& Yandell 1985; Stone 1986).

In the process of variable selection, GAMs have an
advantage over GLMs in that the smoother automati-
cally takes into account the shape of the curve for that
variable. Thus, it is not necessary to choose whether a
higher order term should be included, a decision that
needs to be made for each case when using a GLM. For
example, an x2 term may be insufficient when attempt-
ing to add variable x into the model; including an x3 term
could have made x statistically significant. However, in
the development of this work, we have encountered data
sets, which when g(µ) = α + f1(x1) was fitted, the
function f̂ 1(x1) was β̂2 1x1 (i.e. the GAM was a GLM),
but after fitting g(µ) = α + β1x1 + β2x1

2 it was discovered
that β2 was statistically significant. Such cases depend
critically on the smoother used.

Approximate confidence curves can be obtained for
each function of a fitted GAM. This is sometimes useful
because it gives an indication which parts of the func-
tion are less accurately estimated (often because of
fewer data points). GAIM can output confidence curves

of the form f̂ j ± 2SD[ f̂ j] (see Fig. 3) and an example is
given below. When fitting GLMs, partial residuals
(Landwehr, Pregibon & Shoemaker 1984) can be used
to identify the functional form of each variable (i.e. to
identify the fj(xj)). In GAMs, partial residuals may also
be calculated and plotting them can reveal outliers.

In order for a GAM to be successfully fitted to data,
the algorithm requires convergence in two stages. The
first is in the approximation of the regression surface by
a sum of smooth functions. The second is in the overall
fit of the model, as measured by the deviance. The
former is called the backfitting algorithm (Friedman &
Stuetzle 1981) and is imbedded within the the latter
stage (the local scoring algorithm). Convergence is
achieved by iterating until the changes are sufficiently
small. Occasionally there is a failure to converge within
a certain number of iterations and it seems more likely
when the number of variables in the model is large.
(Theoretical convergence properties have been derived
for a particular class of smoothers called linear smoothers;
Buja, Hastie & Tibshirani 1989).

A p-dimensional smoother can be used to model the
regression surface (p throughout this paper denotes the
number of explanatory variables). A p-dimensional
smoother smooths a single response variable with re-
spect to p other variables. However, this is not done very
often - despite this being the most nonparametric way of
proceeding. There are several reasons. Firstly, smoothers
break down in high dimensions because of the “curse of
dimensionality” (Friedman & Stuetzle 1981). Here, for
fixed n, the data become more isolated in p-space and
smoothers require a larger neighbourhood to find enough
data points in order to calculate the variance of an
estimate. Hence the estimate is no longer local and can
be severely biased. Secondly, higher dimensional
smoothers are numerically more intensive. Thirdly, it is
difficult to interpret the effect of the variables on the
response. The fitting of a set of additive one-dimen-
sional smooths to approximate this surface is a compro-
mise between a p-dimensional smoother and estimating
the regression surface by the sum of linear functions.

An example of the use of a two-dimensional smoother
is found in Huntley, Bartlein & Prentice (1989). In their
study, the response variable was pollen percentage for
Fagus and two explanatory variables were used (mean
January and July temperatures). A two-dimensional
smoother (LOESS; see Cleveland & Devlin 1988) was
used to estimate the regression surface. Since the iden-
tity link function was used i.e. g(µ) = µ  the regression
surface was the same as the response surface. In our
notation they fitted g(µ) = µ = α + f(x1,x2) where Y =
pollen abundance of Fagus (%) and XT=(mean January
temperature, mean July temperature). Climate estimates
were fitted and grey-scale plots similar to ours were also



Yee, T. W.  &  Mitchell, N. D.592

constructed.
In practice, it is often necessary to deal with interac-

tions between variables. For example, if high rain com-
pensates high temperatures in the survival of a certain
plant species, then an interaction model would be re-
quired. Two variables do not interact if the effect on the
response variable of one variable is the same no matter
what value the second variable takes. Geometrically,
cutting cross-sections of the regression surface at two
points on the second axis and parallel to the first will
yield parallel curves. When there is no interaction, the

regression surface can be expressed as the sum of p
functions f1(x1), f2(x2),…, fp(xp). When interaction is
present, the effect of a variable differs or depends in
some way on the value of the other variable. In practice
we try to detect and test for interactions and only include
interactions in a model if the data reveals unequivocally
that significant interactions are present. A common
method of modelling simple interactions (for continu-
ous variables) is to create a new variable which is the
product of the two (i.e. if X1 and X2 are suspected to
interact, the variable X3 = X1X2 can be created and g(µ) =

Fig. 1. Sampled site locations used in the Agathis
australis study. An ‘x’ denotes a case site and a
‘o’ is a control site.
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Fig. 2. Estimated presence-absence response curves for three
contrasting species against annual mean temperature. (a)  Re-
sults from a GAM with span chosen by cross-validation.
(b) Results after tests for nonlinearity for Knightia excelsa
and Vitex lucens in (a).

Table 1. Climate variables and abbreviations used in the study.

SOLAR RADIATION VARIABLES
x1 = srann = Annual mean solar radiation (MJ m–2 day–1)
x2 = srmax = Highest monthly solar radiation
x3 = srmin = Lowest monthly solar radiation
x4 = srseas = Solar radiation seasonality (=(x2 – x3)/x1)
x5 = srwet = Mean solar radiation in the wettest quarter
x6 = srdry = Mean solar radiation in the driest quarter

TEMPERATURE VARIABLES
x7 = tmann = Annual mean temperature (°C)
x8 = tmmax = Maximum temperature of the hottest month
x9 = tmmin = Minimum temperature of the coldest month
x10 = tmseas = Temperature seasonality (=(x8 – x9)/x7)
x11 = tmwet = Mean temperature in the wettest quarter
x12 = tmdry = Mean temperature in the driest quarter

RAINFALL VARIABLES
x13 = rfann = Annual precipition (mm)
x14 = rfmax = Precipitation in the wettest month
x15 = rfmin = Precipitation in the driest month
x16 = rfseas = Precipitation seasonality (=(x14 – x15)/(x13/12))
x17 = rfwet = Precipitation in the wettest quarter
x18 = rfdry = Precipitation in the driest quarter.

α + f1(x1) + f2(x2) + f3(x3) fitted. A test would then be
made to see if X3 is required).

In this study climate is assumed to be the major
determinant in species’ distributions; however, qualita-
tive variables such as soil type may also be important
and can be used as explanatory variables. For example,
suppose there were I soil types and one continuous
variable, such as annual mean temperature. It would be
possible to fit logit(p) =αi + fi  (annual mean tempera-
ture) (i = 1,.., I). This assumes that the effect of annual
mean temperature depends on the soil type. A simpler
model would be to fit logit(p) = αi + f (annual mean
temperature) (i = 1,.., I) where the effect of annual mean
temperature is the same, no matter what the soil type.
These models parallel the analysis of covariance in
linear regression theory. Hastie & Tibshirani (1986,
1987a, 1987b, 1990) give examples illustrating how to
detect interactions.

Data sources

Plant species used

Knightia excelsa is a common, long-lived Angio-
sperm tree, found throughout the North Island of New
Zealand and the north of the South Island. It is found
from sea level to 1050 m, growing on a wide range of
substrates and landforms. It is considered to be a hardy
species and may be found as an early emergent during

succession, as well as a canopy member of closed forest.
Agathis australis is a common, very long-lived Gym-

nosperm tree, restricted to the area north of 38°S and
West of 176°E. It is found from sea level (although
usually away from the coast) to an elevation of 700 m,
typically growing in shallow, nutrient-poor soils on
steep slopes. Agathis australis is considered to be mod-
erately frost sensitive and its geographic distribution is
assumed to reflect this sensitivity.

Vitex lucens is a common Angiosperm tree with a
similar geographic distribution to Agathis australis, ex-
cept that it occurs across the full width of the North
Island. It has a more coastal/lowland distribution, being
found from exposed coasts to an elevation of 450m.
Vitex lucens may be found on a variety of slopes, al-
though it typically occurs on more moderate slopes that
have higher nutrient status soils than for Agathis austra-
lis. It is considered to be extremely frost tender, with a
more common occurrence on north-facing slopes.

All three species may be found occurring at the same
sites, although there are clearly local niche differences
as well as a more regional scale differentiation.
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abundance of variable areas to presence/absence. In
total, 1464 records were usable for Agathis australis,
4172 for Knightia excelsa and 1239 for Vitex lucens. A
consequence of the variable origin of the data was that
geocoded presence/absence information proved to be
the only reliable basis for further analysis.

The spatial intensity of the sample sites varies, partly
as a consequence of forest clearances, but also in part, as
a consequence of survey design (Fig. 1). However, in
total, these data cover the full topographical and geo-
graphical range of all species and should encompass the
full environmental variation within which the species
survive. Although not a perfect random sample of sites,
the sites are believed to be a good representation of these
species in New Zealand.

Because the entire data set was too large to be
accommodated,  a case-control sample (see App. 2) was
taken, making the analysis slightly more complicated.

Climate data

Climate variables were estimated for each location
by use of BIOCLIM (Nix 1986), a program which
estimates parameters from surfaces generated using a
Laplacian smoothing spline fitted to meteorological data
(Hutchinson & Bischof 1983; Hutchinson et al. 1984).
Estimation of climate variables at particular sites from
fitted climate surfaces were developed for New Zealand
by Mitchell (1991) and are functions of latitude, longi-
tude and elevation. From each of the temperature, rain-
fall and solar radiation surfaces, the following six vari-
ables were produced: the annual mean or total, highest
mean monthly maximum, lowest mean monthly mini-
mum, seasonality ((monthly maximum - monthly mini-
mum)/annual value), mean or total for the driest and
wettest quarters. The variables are listed in Table 1. For
some of the variables, notably precipitation, the correla-
tion between variables is quite high.

This type of data has been used elsewhere to analyse
species distributions with respect to climate (e.g. Nix
1986; Busby 1986; Caughley et al. 1987; Podger et al.
1990; Mitchell 1989, 1991). However, in most of these
cases no attempt was made to statistically define which
climatic variables were of greatest importance, nor to
spatially relate the probability of survival to specific
climatic effects.

Analyses and Results

GAMs are illustrated using presence-absence data
of several North Island species. Different facets of GAMs
are illustrated by three separate analyses. The first is a
GAM fitted for three species against a single gradient.

Species data sources

The data sets were derived by merging data from
herbaria and a number of vegetation surveys to docu-
ment the distribution of established trees. A proportion
of the data (approximately 60% for Knightia excelsa,
30% for Agathis australis and 10% for Vitex lucens) was
collected during the 1950’s by the New Zealand Forest
Service (Masters, Holloway & McKelvey 1957) as part
of a stratified survey of timber resources. The rest of the
data were either collected during comprehensive sur-
veys from 1979-1986 (the Northland Forest Inventory
of the then Department of Lands and Survey, and the
Protected Natural Area programme of the now Depart-
ment of Conservation), or represent additional observa-
tions by one of us (NDM). The data were collected in a
variety of ways ranging from plot counts through cover

Fig. 3. (a) The estimated contribution f̂ 7(x7) of annual mean
temperature to logit{p(x)} for Vitex lucens is the solid curve.
The dotted curves are f̂ 7(x7) ± 2SD[ f̂ 7(x7)]. Each vertical bar
at the base of the graph denotes an observation with that value.
(b) The estimated contribution  f̂ 5(x5) of solar radiation in the
wettest quarter to logit{p(x)} for Vitex lucens is the solid
curve. The dotted curves are f̂ 5(x5) ± 2SD[ f̂ 5(x5)]. Each
vertical bar at the base of the graph denotes an observation
with that value.
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Table 2.  (a) GAM fitted on Vitex lucens. (b)  Gaussian logit
model with an interaction term fitted on Vitex lucens. S.E. is
the standard error of the estimate and Z is the test statistic
value.

(a)
Variable Span d.f. Slope

constant - 1 0.5671
tmann 0.7 2.334 smooth
srwet 0.7 2.373 smooth

Deviance = 457.909; Degrees of freedom = 821.29.

(b)
Variable Estimate S.E. Z

constant α –224.550  118.954 –1.89
tmann β1       6.3261     8.908 0.71
(tmann)2 β2     –0.7890      0.2264 –3.48
srwet β3       3.8333      2.026 1.89
(srwet)2 β4     –0.04027      0.01143 –3.52
(tmann)(srwet) β5       0.21575      0.08500 2.54

Deviance = 456.363; Degrees of freedom = 821.

The second fits a species against two gradients (ex-
planatory variables) and interactions are explored. Both
of these will be compared to their GLM equivalent. The
third analysis is a larger analysis where all statistically
significant variables are added to form a model and
interactions tested. A grey-scale plot is constructed and
some applications are briefly mentioned. It is important
to appreciate that the one and two variable models are
included only to illustrate what is happening during the
initial stages of a full model-building analysis and to
illustrate concepts in a simple setting.

Three contrasting species

Fig. 2a shows the response curves of GAMs fitted
for the three contrasting species against annual mean
temperature. This variable was chosen because tem-
perature variables, as compared to the solar radiation or
rainfall variables, were always the most statistically
significant single variables in the regressions.

Two important points are illustrated by Fig. 2. Firstly,
a GAM may be a GLM if the smoother fits a linear
function (smoothers tend to fit lines to data if the data is
linear or if it is very noisy). This is shown in the case of
Agathis australis in Fig 2a. Hence the nonparametric fit
is, in fact, a parametric one. Where, as here, only part of
the curve is visible over the existing range of climatic
conditions, the curve is described as being truncated.

The second point is an attempt to test nonlinearity of
the covariate. This can only be done with the other two

Fig. 4. (a) Contour plot of the response surface (probability of
presence) from a GAM fitted on Vitex lucens. Units for the
variables given in Table 1. The dotted polygon represents a
convex hull surrounding the sample data.
(b) Contour plot of the response surface (probability of pres-
ence) from a Gaussian logit model with an interaction term,
(eqn. (4)), fitted on Vitex lucens. Units for the variables given
in Table 1. The dotted polygon represents a convex hull
surrounding the data. The contour levels match those in (a).

species. Knightia excelsa has a classical bell-shape curve
which suggests that the Gaussian logit model (2) may be
appropriate. After fitting (2) and observing the reduc-
tion in deviance, it was concluded that the parametric fit
is indeed ‘allowable’. The same was done for Vitex
lucens and the nonparametric fit could not be rejected:
Vitex lucens has to be fitted nonparametrically. The
final curves for the three species are found in Fig. 2b.

Vitex lucens

Several methods of variable selection were avail-
able. One alternative is ‘subsets selection’ (see Miller
1984, 1990). In this case, a number of models contain-
ing one, two, three, and so on, variables are examined
which are considered the ‘best’ according to some speci-
fied criterion. Secondly, since several variables were
highly correlated, particularly those within the same
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group (temperature, solar radiation and precipitation), it
would be possible to use one representative from each
group.

Stepwise regression (see Seber 1977) was adopted
here as a third alternative. The procedure was started
with a constant term: at each stage the most significant
variable (if any) is added and a test is made as to whether
any variables in the model can be deleted. This is a
combination of forward selection and backward elimi-
nation. Stepwise regression has a number of pitfalls (see
Greenland 1989) and its use in this paper is not intended
as an unconditional recommendation.

The most significant variable is not necessarily the
variable that causes the greatest drop in deviance since
variables may have different degrees of freedom. In-
stead, the drop in deviance is compared to a chi-square
distribution with degrees of freedom equal to the de-
grees of freedom between the two models. For example,
a drop of six in deviance with an extra one degree of
freedom is statistically more significant than a drop of
10 in deviance with three degrees of freedom (0.014 =
P(χ1

2
 > 6) < P(χ3

2 > 10) = 0.019). As the degrees of
freedom for GAMs is real-valued, the ability to compute
areas under a χ2 probability density function with real
degrees of freedom is therefore required. If the drop in
deviance was less than a suitable cut-off such as the 5%
point of a χ2 distribution (with degrees of freedom equal
to the degrees of freedom of that variable), then that
variable could not be added to the model. Such a test is
valid if the sample size is large. In this study a 5% cut-
off was used throughout.

The mean annual temperature was found to be the
best fitting single variable, giving a large D2 value of
57.4%. D2 (= 100 (null deviance – deviance)/null devi-
ance)) represents the percentage of deviance explained
and is analogous to R2 in regression. This was followed
by solar radiation in the wettest quarter (Table 2a).
Confidence curves as described above, with the fitted
function, are plotted in Fig. 3. These results suggest that
the overall temperature environment is of major impor-
tance for the survival of the species. Simply, the warmer
the location, the more suitable it is for the species. The
levelling off of the fitted temperature function at 15 °C
suggests this to be its optimum, as was also seen in Fig.
2. From what little is known of the species, this tends to
conform to the observation that it is commoner on
warm, north-facing slopes. The role of solar radiation in
the wettest quarter suggests that the species must main-
tain a minimum level of metabolism during the winter.
This can only be met in specific localities, although the
sites of highest winter solar radiation appear to be less
suitable.

The interaction between the variables was tested
firstly by adding the variable (tmann)(srwet) to the

Table 3. Stages of the stepwise regression procedure in fitting
the model for Agathis australis. Note: x9 = minimum monthly
temperature, x3 = minimum monthly solar radiation, x18 =
rainfall in the driest quarter, x6 = solar radiation in the driest
quarter.

Variable Deviance d.f. D 2

intercept 1243.682 901
intercept+x9 703.568 900 .4343
intercept+x9+x3 635.128 897.65 .4893
intercept+x9+x3+x18 591.008 894.28 .5248
intercept+x9+x3+x18+x6 575.262 892.44 .5375

model. This resulted in a drop in deviance of 3.533 for
an extra 1.016 degree of freedom, giving some evidence
of an interaction (p = 0.062). The response surface
resulting from this model is shown as a contour plot
(Fig. 4a). Overlaid on it is a convex hull (Green 1981),
approximately indicating the region in which the sample
data lie.

As with the one variable case, the (no-interaction)
GAM was compared to its equivalent GLM. The re-
sponse surface was modelled by a two-dimensional
Gaussian logit model and in this case provided as good
a fit as the GAM model, provided an interaction term
was included. The results of this regression,

logit(p) = α + β1x7 + β2x
2
7 + β3x5 + β4x

2
5 + β5x7x5, (4)

are found in Table 2b and Fig. 4b. The Z column
provides an approximate method for testing for the
significance for that variable (i.e. whether the coeffi-
cient is zero). It is obtained by dividing the estimate by
its standard error. This test-statistic is standard normal if
the coefficient is zero. The results show that the interac-
tion term is statistically significant (p = 0.0111). This p-
value is smaller than before, reflecting the increased
power of a parametric test, and to some extent the
approximate nature of inference for GAMs.

From Table 2b, the optimum (u1, u2) can be esti-
mated (Jongman, ter Braak & van Tongeren 1987):
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Note that this point lies outside the convex hull of
the data points and so should be treated with caution. A
biological interpretation might be that there are pres-
ently no sites in our sample which provide an optimum
environment for this species. In comparison (û 1, û 2) is
quite different from the optimum suggested by the GAM
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Fig. 5. Fitted function values,
f̂ j(xj), of each observation on

Agathis australis vs. each vari-
able xj  (j = 3,6,9,18). Confi-
dence curves have been omitted.

Fig. 6. Grey-scale plot of the fitted GAM (found in Table 3) on
Agathis australis overlaid upon a map of the North Island of
New Zealand. Areas where the fitted probability is less than
0.01 are white.

(Fig. 4a). It is well known that it is difficult to estimate
the optimum accurately if it lies ‘outside’ of the data (ter
Braak & Looman 1986). The ability to calculate an
explicit optimum clearly illustrates why a parametric fit
is preferred to a nonparametric one.

Because the ‘interpretation’ of the fitted functions
f̂ j(xj) only makes sense when there are no interactions,

we have assumed there are no interactions. Unfortu-
nately, the two-dimensional Gaussian logit model pro-
vides strong evidence of an interaction - thus suggesting
our interpretation of each climate variable may not be
accurate. Nevertheless, insight has been gained, espe-
cially from an exploratory point of view. If the analysis
was terminated at this point, (4) would probably be
satisfactory for most purposes.

Agathis australis

From the initial 18 variables, the final model for
Agathis australis was obtained by stepwise regression.
The final model and the path leading to it is shown in
Table 3. An analysis of partial residuals showed that
there were a number of outliers in the data. These
observations were deleted early in the analysis.

Four variables were found to provide the best fit:
minimum monthly mean temperature and solar radia-
tion, total rainfall of the driest quarter and mean solar
radiation in the driest quarter. Two of these were linear
functions on the logit scale (minimum monthly mean
temperature and solar radiation in the driest quarter) and
the other two were approximately unimodal. The fitted
function values are plotted in Fig. 5, where the confi-
dence curves have been omitted. Interactions were ex-
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Fig. 7. Case sites  used in the
Agathis australis study. The
endpoints of the box for each
variable are the 5 and 95 per-
centiles e.g. the 5 percentile
of maximum monthly rain-
fall is 150 mm. Correlation
coefficient = 0.933.

plored by separately testing the significance of the six
created variables resulting from each pairwise product
of the four variables. None of them needed to be added;
so it was concluded that these four variables were suffi-
cient to adequately model the data on Agathis australis.

The nature of these variables and the order in which
they were added to the model are of great interest. The
first two variables relate to mid-winter conditions. The
positive slope for minimum monthly temperature sug-
gest the importance of mid-winter temperatures in con-
trolling the species’ distribution. It was interesting that
minimum solar radiation was the second variable to be
added. This suggests that, as for Vitex lucens, in mid-
winter the plants are not ‘dormant’ and that active
metabolism must proceed. Again, the positive slope
suggests a limiting value, below which the plants cannot
survive. However, the fitted function also suggests that
at higher values of mid-winter solar radiation, a site will
become less suitable for survival. The biological signifi-
cance of this is not clear.

The other two variables relate to the driest quarter,
which is usually from November to January - the main
growing season. The unimodal nature of the rainfall
curve suggests that too much rain is as bad as too little
rain during this period. The latter effect is not unex-
pected, since other work suggests that summer drought
halts wood production (Palmer 1982). The possible
effect of too much rainfall is more problematic. Higher
rainfall areas are principally at higher altitude and it is
possibly related to cooler growing conditions, or even

reduced solar radiation due to increased cloudiness.
There may also be biological effects such as incidence
of disease or increased competition. The plateau for
rainfall in the driest quarter is probably due to the
sampling. The solar radiation response suggests the
species requires a ‘high light’ environment during the
growing season, presumably to maintain growth and
reproduction. Work by Bieleski (1959) and Pook (1979)
have shown that Agathis australis seedlings grow best
under higher levels of illumination. The common occur-
rence of the species on exposed ridges (especially in the
southern part of its range) would also tend to suggest
that the species can make use of these high light envi-
ronments.

Once the final model was obtained, a probability
map was constructed for the the North Island. To achieve
this, the fitted climatic surfaces were interpolated on a
five km2  topographic grid of the North Island using
BIOCLIM and the variables were substituted into the
final model. As some of the functions were smooths,
numerical interpolation was used. The probability sur-
face can be displayed by either a contour plot or a grey-
scale plot. The latter is more intuitive, while the former
makes it easier to interpolate a value at a specific loca-
tion. The grey-scale plot is shown in Fig. 6. It suggests
the most suitable environment for Agathis australis is
found midway in Northland, i.e. at approximately 36°S.
Interestingly, locations to the south of its present range
(ca. 39°S; near New Plymouth) and further east than at
present (ca. 178°E; in the Bay of Plenty-East Cape
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region) also appear to be suitable.
The idea of plotting probabilities over a map is not

new: Wrigley (1977a,b) produced these and called them
probability surface maps. We believe that the approach
used here is a great improvement over these earlier
attempts, both methodologically and graphically.

Discussion

GAMs are a major improvement over previously
described methods for analysis of the relationship be-
tween species distribution and climate. Previously, Busby
(1986), Booth (1985) and Mitchell (1991) have all used
the same ‘BIOCLIM approach’, and although the tech-
niques showed some success, the methods employed
were somewhat arbitrary,  and consisted of fitting a p-
dimensional box over the data - of which some variables
are highly correlated. Even in two dimensions, this can
be seen as unsuitable (Fig. 7). In these studies there were
no measures of the magnitude of suitability of a loca-
tion, simply that it had potential to support the species.

Work by Booth et al. (1987) employed a Gower
similarity measure

dij = ∑
S

k = 1
 ||X ik − X jk  ||

 to assess the similarity in climate between two loca-
tions. However, their method did not adjust for the
magnitude of the variables and their results were based
upon a few of the precipitation variables. We believe
that even if a more appropriate similarity measure is
used, GAMs or GLMs are more elegant and flexible.

There are several unresolvable problems with the
analysis illustrated in this paper. Firstly, we never know
the exact values of the climatic variables at each site -
they were only estimated. Standard regression theory is
based on the assumption that all explanatory variables
are measured without error (Chatterjee & Hadi 1988);
this assumption also holds for GAMs. This may have
introduced an additional source of error and bias in our
study, resulting in the attenuation of regression effects.
Secondly, spatial autocorrelation violates the independ-
ence assumption required by GLMs (and GAMs). In the
notation used earlier, the Yi are not independent: the
presence/absence of a species may be affected by its
presence/absence in nearby locations. Thirdly, a ran-
dom sample of all possible sites (which excludes farm-
land, etc.) is required which, for a study on as a large
scale as this, becomes almost impossible to obtain. In
Fig. 1, which shows the sites used in the Agathis australis
analysis, the non-randomness is apparent. For example,
there is a disproportionate number of sites in the

Coromandel Peninsular (37°S and 175.5°E in Fig. 6).
One way to improve the results is to perform a stratified
case-control study. The country would be stratified into
regions and a test can be made for a ‘region effect’.
Theory for this method, for GLMs, is found in Scott &
Wild (1989); how this theory might change with GAMs
has not yet been clarified. Fourthly, the size of the sites
were not identical; indeed, some site sizes were un-
known. It was only known that the species were present
at a specific location (the accuracy of location was
always to approximately 100m, which on a regional
scale such as this, effectively makes each record a point
location). Known site sizes varied from 20 m2 to about
50 m2.

The method by which the site locations are chosen is
crucial. In our opinion many of the different types of
response curves seen in the literature could be due to the
sampling (see Austin, Cunningham & Fleming 1984).
Indeed, by oversampling and undersampling certain
areas, any type of response curve could theoretically be
obtained. Under random sampling, all forested areas of
the country should have an equal probability of being
sampled. The samples would be all the same size and
recording the presence-absence of each species should
be made without any classification errors (Ekholm &
Palmgren 1982).

Agathis australis, although a very interesting spe-
cies, was not necessarily a good species to study be-
cause its distribution has been severely affected by
humans. Its advantage is that the present day distribu-
tion is very well documented and although its total
abundance has been severely reduced (Beever 1981), it
still occurs throughout its full range. We also chose this
species so that the improvement obtained by using GAMs
could be compared with an earlier analysis by Mitchell
(1991).

There are many potentially important applications
of GAMs. Clearly, the grey-scale plots indicate into
which areas a species could be introduced. Also, GAMS
provide a refined approach to modelling the potential
changes in species distributions that might result from
global warming. The approach would be to fit GAMs
separately to each species and substitute the climate
estimates of the area into the fitted models to estimate
the change in the probability of presence for each spe-
cies. This approach has been attempted previously (e.g.
work by J. R. Leathwick in Hollinger 1990 using GLMs
for an area in the central North Island of New Zealand).
Another application would be to fit GAMS to several
species to see which species would be the most (climati-
cally) suitable to introduce into a particular area (e.g.
Booth 1985, 1990). An agricultural application would
be to grow crops at various experimental sites reflecting
a wide range of environments, with their productivity
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measured on an ordinal scale (for example, 0 for non-
survival and 10 for abundant growth). Since GAIM
allows the fitting of proportional odds models (Hastie &
Tibshirani 1987b), finer estimates of crop performances
with respect to the climatic variables could be deter-
mined. As a result, this could be used to find regions
climatically suitable for use in species introduction.
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App. 2. Case-control (or retrospective) studies are popular in
biostatistics. The essential idea is that separate samples of
cases and controls are taken. In this field, a case is often a
person with a certain disease and a control is someone without
the disease. In our context we will define a case (respectively,
control) to be a site with the species present (respectively
absent). Sampling was necessary to keep the computation time
down to within reasonable levels. A case-control sample was
performed to maximize information about the effect of the
variables.

To illustrate the necessity of a case-control study, suppose
there were 600 sites where a species existed and 9400 sites
where it did not. If 1000 sites were sampled (unconditionally)
from all the sites, there would be approximately 60 case sites
and 940 control sites. This provides much less information
about the effect of the covariates than separate samples of 500
case sites and 500 control sites.

For logit models (i.e. g(p) = logit(p) in (1)), one can ignore
the fact that case-control sampling has been undertaken except
for a simple correction to the intercept term in the regression.
To obtain the correct intercept term, log(n1N0/(n0N1)) is sub-
tracted from the fitted intercept term , where n0=number of
controls in the subsample, N0 = number of controls in the
whole data set, n1 = number of cases in the subsample and
N1=number of cases in the whole data set (see Scott & Wild
1991). This adjustment is necessary in order to correctly scale
the probabilities due to the different sampling intensities of the
cases and controls.

In our analyses, we took random samples of about 450
cases and 450 controls for each species. For example, for
Agathis australis, n0 = 419, N0 = 7139, n1 = 493 and N1 = 1464.
For further information about case-control sampling see  Scott
& Wild 1986, Prentice & Pyke 1979, and Hosmer & Lemeshow
1989.

App. 1. This appendix briefly describes three modern regres-
sion methods somewhat similar to GAMs. A general reference
is Becker, Chambers & Wilks (1990).

Recall that for GLMs

g{ E(Y|x)} =  α + βTx = α +        βjxj

and for GAMs

g{ E(Y|x)} =  α +       fj(x)j

where g is prespecified by the user. GAMs are
therefore a way of extending the additive model

E(Y|x) =         fj(x)j.

Alternating Conditional Expectation (ACE; see Breiman &
Friedman 1985) provides another way of extending the addi-
tive model. For ACE one fits the model

E{ h(Y)|x} =         fj(x)j. (5)

where h, f1, f2,.., fp are smooth nonlinear functions estimated
from the data (y, x1,.., xp). The criterion is to maximize the
correlation between both sides of (5). As with GAMs it is very
useful as a modelling tool to help determine which of the
response y and explanatory variables x1, x2,.., xp are in need of
a nonlinear transformation and what type of transformation is
needed. A method similar to ACE is additive nonlinear regres-
sion with variance stabilisation (AVAS). It also fits a model of
the form (5) with the fj chosen as in ACE, but the h chosen to
achieve constant residual variance. It has the same usefulness
as ACE.

Another extension of the additive model above is to fit

E(Y|x) =        fk(ak
Tx),

∑
p

j = 1

∑
p

j = 1

∑
p

j = 1

∑
p

j = 1

∑
K

k =1

where for each k = 1,.., K,  ak is a unit vector, fk is a smooth
nonlinear function and ak

Tx  is the projection of x (= (x1, x2,..,
xp)

T) onto ak. The ak  are found by a numerical search and K is
determined from the data. This is Projection Pursuit Regres-
sion (PPR; Friedman & Stuetzle 1981) and, like ACE and
AVAS, is available in the S-PLUS package. Although PPR is
difficult to interpret, it easily handles interactions. FORTRAN
source code for these three methods is available from the
statlib library (see App. 3).

The theory for these methods has not been developed to
the extent  of GLMs. As a result its current use is principally
for exploratory data analysis and with formal analyses usually
made under the framework of GLMs. All three are sensitive to
outliers and hence lack the robustness often necessary in
biological analyses.

App.  3. The version of GAIM used in this paper was the
original 1984 version. Currently, two later versions are avail-
able. One is PC GAIM, a version for PC’s running DOS.
Copies may be ordered by writing to S. N. Tibshirani Enter-
prises, Inc. 5334 Yonge St, Suite 1714. Toronto, ON M2N
6M2, Canada.

The FORTRAN source code of a second version of GAIM
is available from the statlib library. This is free, and can be
obtained by sending an e-mail letter to STATLIB@-
LIB.STAT.CMU.EDU consisting of a single line “send gamfit
from general”. A list of other statistical software available can
be obtained by sending the line “send index from general” to
the same address, or the  line “send index” for more general
information.


